

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Advanced Surface Treatments for Armament Weapon Systems

Mr. Adam L. Foltz, P.E. RDAR-WSW-F adam.l.foltz.civ@mail.mil (973) 724-7096 Dr. Christopher P. Mulligan RDAR-WSB-LB christopher.p.mulligan.civ@mail.mil (518) 266-5415

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

Mr. Douglas Witkowski RDAR-WSW-F douglas.g.witkowski.civ@mail.mil (973) 724-6389

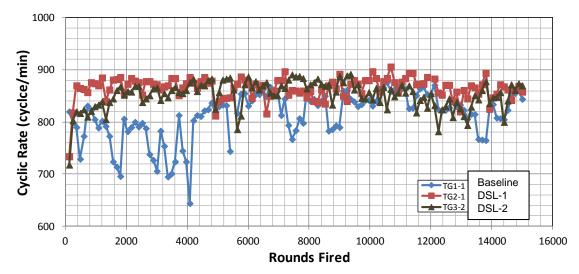
2 June 2015

UNCLASSIFIED

Durable Solid Lubricant (DSL)

- Problem
 - Reduce or eliminate lubrication requirement for reduction in maintenance and increased reliability for small arms
 - Ability to provide correct combination of wear resistance, optimized friction coefficient, corrosion resistance, and anti-fouling/material transport behavior in the presence of propellant residue and environmental debris
- Approach
 - Implementation of advanced surface treatment to provide Durable Solid Lubrication (DSL)
- Objectives
 - Improve reliability and maintainability of small arms with specific emphasis on operation in extreme environments
 - Reduce or eliminate the need for conventional lubricants in weapon action components

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.


Demonstrated Results

After 15,000 rounds (ambient):

Demonstrated Results

The DSL weapon systems performed as well or better than the CLP lubricated baseline under ambient testing conditions

- Increased weapon reliability
- Decreased wear on critical sliding surfaces
- More consistent cyclic rates
- Easy maintenance/cleaning with no CLP

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

UNCLASSIFIED

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.⁴

Detailed Description

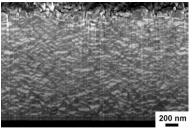
• Technology Details

- 1) A durable solid lubricant deposited on the surface of substrate material, characterized by specific properties based on
 - a) Hardness
 - b) Thickness
 - c) Coefficient of Friction
 - d) Corrosion Resistance
- 2) A durable solid lubricant eliminating the need for conventional liquid lubricants
- 3) A durable solid lubricant providing:
 - a) low friction; elimination of jamming related failures of sliding components resulting in increase component reliability
 - b) increased component wear life; highly resistant to wear and eliminating hydrogen embrittlement factors from standard phosphate treatments resulting in longer lasting parts
 - c) corrosion protection in all relevant environments
 - d) improved maintainability; promotes ease of cleaning and reduction in active maintenance

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

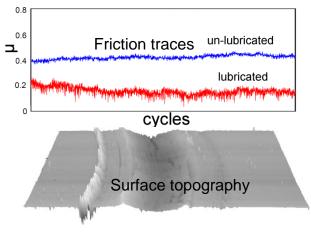
UNCLASSIFIED

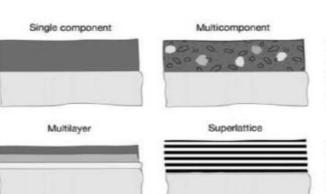
Background

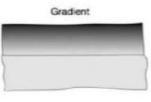


Self-Lubricating Nanocomposites

Nanocomposite and multilayer coatings with SOLID based lubrication:


Applicable to:


- Weapon action components
- Vehicle action components
- Manufacturing/Machining operations
- Advanced oil-free turbomachinery
- <u>Allows</u>: Elimination of conventional liquid lubricants - Increased reliability of parts, decreased logistical burden



Cross-section of NC coating. Nanoscale solid lubricant (light phase) encapsulated in hard matrix (dark phase).

Bench scale tribological testing:

Duplex treatment

-	-	

- Up to 80% reduction in friction
- Up to 15x reduction in wear

DISTRIBUTION STATEMENT A: Approved

for public release; distribution is unlimited.

UNCLASSIFIED

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.⁶

Technical Approach

Three Stage Approach: Innovative and Tailored Test Protocols Developed

1) Stage 1

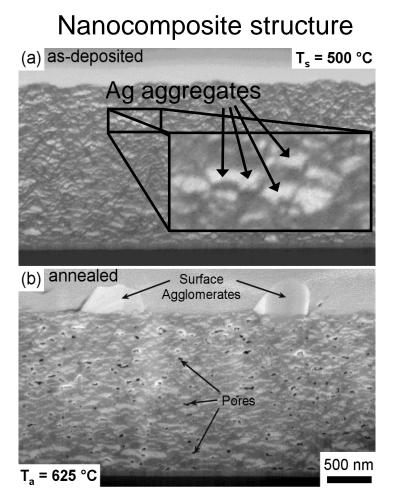
- Broad screening tests to include rapid Ball-on-three-disk (BOTD) tribological testing and coatings characterization
- Down-select promising ca
- 2) Stage 2
 - Targeted bench-scale tribological testing
 - Testing to accurately simulate weapon action
 - Down-select promising

6 different material combinations eval'd

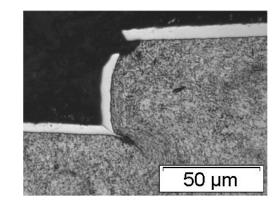
27 different material combinations eval'd

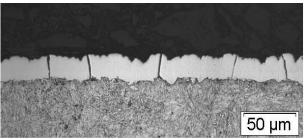
- 3) Stage 3
 - Live Fire Testing

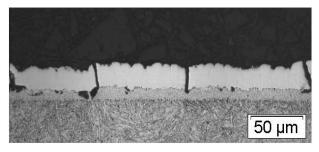
4 different material combinations eval'd



DISTRIBUTION STATEMENT A: Approved


for public release; distribution is unlimited.


Stage 1 Characterization



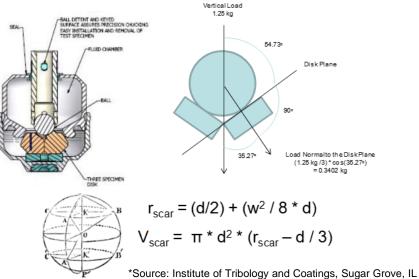
Porosity/cracking/defects

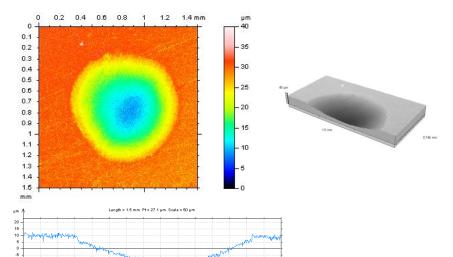
RDECOM

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

UNCLASSIFIED

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.8




Stage 1 Characterization

0.2

Stage 1:

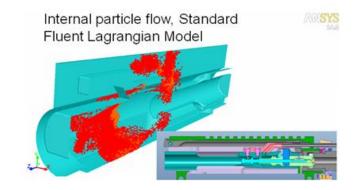
- Broad and rapid screening of fundamental properties using ball-on-three disk (BOTD tribological testing apparatus developed for this program)
 - 27 different material combinations evaluated
- Broad spectrum of environments tested for each
 - Dry or with CLP (lubricant)
 - Temperature 25 versus 250 °C
 - Sand or no sand

13

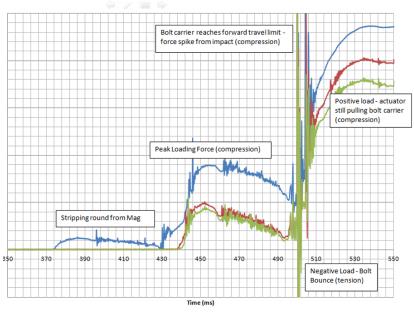
Parameters (Rotational Speed, Test Duration, Cycles, Load, Contact Pressure, Environment, Temperature)

Autom Baldrige National Quality Award 2007 Award Recipient **DISTRIBUTION STATEMENT A:** Approved for public release; distribution is unlimited.

UNCLASSIFIED


TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.⁹

Stage 2 Characterization


Stage 2:

- CFD Modeling and Simulation, Peak force analysis, and Targeted bench-scale evaluation using Slide-Rail-Simulator for quantitative evaluation of weapon interfaces.
 - 6 different material combinations evaluated

Developed/Fabricated bench scale test hardware to measure peak loading/extracting forces.

Peak loading force comparisons

DISTRIBUTION STATEMENT A: Approved

for public release; distribution is unlimited.

UNCLASSIFIED

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.¹⁰

Stage 2 Characterization

ᠴ

- Slide-Rail Simulator (SRS)
 - Wear and friction behavior in relevant configuration ٠
 - Cyclic reciprocation simulates weapon motion ٠
 - Contact geometry mimics weapon components .
 - Contact stresses based on dynamic modeling
 - Fully instrumented for normal and tangential load

DSI-1 DSL-2 **BL-Dry BL-CLP**

Coefficient of friction

Wear number (lower is better)

Vear Rank Number **DISTRIBUTION STATEMENT A:** Approved for public release; distribution is unlimited.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Stage 3 Live Fire Testing

• Stage 3: Live Fire Testing DSL fired dry versus baseline with CLP

Test Operating Procedures	Reference TOP 3-2-045	Demonstrated
Ambient	Section 4.3	DSL Improved Performance
Hot (160F)	Section 4.5.1	DSL Improved Performance
Cold (-60F)	Section 4.5.1	DSL Equivalent Performance
Sand/Dust	Section 4.5.4	DSL Equivalent Performance
Salt/Fog	Section 4.5.7	DSL No chemical reaction / no corrosive buildup
Unlubricated	Section 4.22	DSL >4X increase in rounds fired w/out stoppages

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

,

UNCLASSIFIED

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.¹²

Path Forward

Future Testing:

- Limited Military Utility Assessments (LMUA)
 - Cold weather testing at Ft. Richardson, AK
 - Ft Benning, MCoE
- ATC Confirmatory Testing (FY15)
 - Technology Transition Agreement (TTA) signed with PMSW
 - Completion of ATC testing will achieve TRL 6

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

UNCLASSIFIED

IED TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.¹³

Summary

Warfighter Payoff

- Increased component wear life
 - More wear resistant and long lasting parts
- Increased reliability
 - Reduce/eliminate jamming related failures in weapon action components
- Improved maintainability
 - Promote ease of cleaning and reduction in Active Maintenance
- Development of innovative lab scale test protocols
 - Developed a standardized process to support future surface treatment characterizations
- Additional applications for Armament System action components
 - Future development work supported through Joint Service Small Arms Program (JSSAP) Office

